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EXPONENTIAL APPROXIMATIONS USING FOURIER SERIES PARTIAL SUMS

NANA S. BANERJEE* AND JAMES F. GEEI:U

Abstract. The problem of accurately reconstructing a piece-wise smooth, 27r-pcriodic function f and

its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The

reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f

are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives.

This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs

phenomenon, and then refining these estimates by fitting the asymptotic form of thc Fourier coefficients to

the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities

are approximated to within O (N-M-2), and the associated jump of the k th derivative of f is approximated

to within O (N -M-l+k) , as N --* oo, and the method is robust. These estimates are then used with a

class of singular basis functions, which have certain "built-in" singularities, to construct a new sequence of

approximations to f. Each of these new approximations is the sum of a piecewisc smooth function and a

new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations,

and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives,

except in the union of a finite number of small open intervals containing the points of singularity of f. The

total measure of these intervals decreases exponentially to zero as M -_ oc. The technique is illustrated with

several examples.

Key words. Fourier series, exponentially accurate approximations, piecewise smooth functions, location

of singularities

Subject classification. Applied and Numerical Mathematics

1. Introduction. Approximate solutions to problems in applied mathematics arc often obtained using

a finite number of terms in the Fourier series representation of the solution. In practice, this truncation

procedure may lead to nonuniformly valid approximations. In particular, when the function being approx-

imated has one or more points of discontinuity, Gibbs phenomena is present, resulting in an "overshoot"

of the jump in the function at a point of discontinuity, as well as artificial oscillations near such a point.

The magnitude of the overshoot is not eliminated by increasing the number of terms in the approximation.

In addition, the oscillations caused by this phenomena typically propagate into regions away from the sin-

gularity, and, hence, degrade the quality of the partial sum approximation in these regions. It has been

conjectured, however, that this oscillatory approximation, which may have been obtained by a high-order

method, such as a spectral method, should contain enough information to enable the reconstruction of the

proper, non-oscillatory, discontinuous function, by a post-processing filter (see, e.g., Lax [17]).

In a series of papers, Gottlieb, et. al. [7], [8], [9], [10], [11], have proposed and investigated a way

of overcoming the Gibbs phenomena. Their technique involves the construction of a new series using the

Gegenbauer polynomials. For a function f that is analytic on the interval [-1, 1], but is not periodic, they

prove that their technique leads to a series which converges exponentially to f in the maximum norm. Re-
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cently, Geer [5] introduced and studied a class of approximations (FN,M} to a periodic function f which

uses the ideas of Padd approximations based on the Fourier series representation of f. Each approximation

FN,M is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial of degree

M. It was proven that these "Fourier-Pad_" approximations converge point-w_se to (f(x +) + f(x-))/2 more

rapidly (in some cases by a factor of 1/k 2M) than the Fourier series partial sums on which they are based.

Although these approximations do not "eliminate" Gibbs phenomena, they do mitigate its effect. In partic-

ular, the asymptotic value of the magnitude of the overshoot is reduced to about 6%, and, outside a "small"

neighborhood of a point of discontinuity of f, the "unwanted" oscillations can (for practical purposes) be

eliminated.

More recently, Geer and Banerjee [6] introduced a new, simple class of periodic "singular basis hmc-

tions", which have special "built-in" singularities. They prove that these functions can be used to construct

a sequence of approximations which converges exponentially to f in the maximum norm. In particular, this

implies that the Gibbs phenomena can be completely eliminated, even when f has several points of discon-

tinuity in the interval [-_r, 7r]. In order to construct these approximations, the locations and magnitudes of

the jumps in f and its derivatives must be known a priori. For many applications, this may present a major

limitation on the practical implementation of their method. However, an extension of their analysis shows

that, if su_iciently accurate approximations to the locations and magnitudes of the discontinuities of f can

be obtained, then the singular basis functions can still be used to construct a sequence of approximations

which converges exponentially to f in the maximum norm, outside the union of a finite number of small,

open sub-intervals containing the points of singularity.

The main purpose of this paper is to present and analyze a simple, accurate, and robust technique to

estimate the points of singularity and the associated jumps in a Lipschitz function and its derivatives, given

only a finite number of its Fourier coefficients. A number of other investigators, including Gottlieb, et. al.

([7], [8], [9]), Solomonoff [21], Eckhoff ([3], [4]) and Bauer [1], have investigated this problem, using a variety

of approaches. In later sections, we shall compare our methods and results with theirs. After presenting

our technique, we will illustrate how our estimates can be used with the singular basis functions method to

accurately reconstruct the original (discontinuous) function, as well as its first few derivatives.

To fix notation, let f be a 2r-periodic Lipschitz function. Then f has enough smoothness and regularity

properties so that its Fourier series exists and converges to (f(x +) + f(x-))/2, for every x • [-_r, 7r], i.e.,

N

a0 + _ aj cos(jz) + bj sin(jx),lim FN(x) = 1 (f(x+) + f(x-)) FN(X) -- -_
N--*oo 2 '

j=l

bj = -_ _ f(x) sin(ix) dx, j = O, 1, ....

Here f(x +) (f(x-)) denotes the limit of f from the right (left) at x, and FN denotes the N th Fourier series

partial sum associated with f (x).

We shall say that x0 is a point of simple discontinuity of f if

[f(x0)] -- f(x +) - f(xo ) _ O.

Also, we shall say that x0 is a point of contact discontinuity of order q of f if

[f(k'(Xo)] _-0, k--0, 1,...,q- 1, and [f(q'(xo)] 0.
L A L ]



Here f(k) denotes the k th derivative of f, and, since we are assuming that f is Lipschitz, both the left and

right limits of each derivative of f exist at every point in the interval [-Tr, _r]. We call a point where f has

either a simple discontinuity or a contact discontinuity a point of singularity of the function.

We now assume that f has a finite (unknown) number, n, of singularities which lie at the (unknown)

locations xl, x2, ... , x, in the interval (-Tr, Tr]. The fundamental problem we shall address and solve in

this paper is that of determining accurate and robust approximations of the singularity locations {x8 } and

the associated jumps [f(k)(xs)], k -- O, 1, ..., given only the first 2N + 1 Fourier coefficients {aj,bj}. In

Section 2, we show how initial estimates of these quantities can be obtained for the simple discontinuities

of f (i.e., for k = 0), by capitalizing on certain properties of Gibbs phenomenon near these points. In

Section 3, we formulate a least-squares optimization problem, which fits an asymptotic form of the Fourier

coefficients, involving the points {xs} and {[f(xs)]}, to some of the known coefficients. It is shown that this

optimization problem can be solved efficiently, using the results of Section 2 as initial estimates. The result

of this least-squares fit provides estimates of the singularity parameters of significantly higher quality than

those obtained without the least-squares approach. In Sections 4 and 5, these results are extended to finding

the jumps in f'(x) at each point of simple discontinuity of f, as well as the locations and magnitudes of the

first order contact discontinuities of f. In Section 6, these results are generalized to find discontinuities in

the M th derivative of f, for M > 2. We shall refer to our method, including the determination of both initial

and improved estimates of the singularity parameters, as the "least-squares parameter estimation" (LSPE)

method. We compare our results with those of other investigators in Section 7. In Section 8, some aspects

of the robustness of the LSPE method are discussed and illustrated with three examples. In Section 9, it is

shown how the LSPE method can be used with the singular basis functions introduced in [6] to reconstruct

the original (discontinuous) function, as well as its first few derivatives, with exponential accuracy. Some of

the details of our analysis are included in two appendices.

2. Points of simple discontinuity - initial estimates. It is well known that, around a point, x_, of

simple discontinuity off, the Fourier series partial sums {FN} exhibit Gibbs phenomenon. This phenomenon

includes the oscillatory behavior of FN near xs, as well as the tendency of FN to "overshoot" the magnitude

of the jump in f at x_. The difference between the extrema of FN closest to xs asymptotically approaches

about 118% of [f(xs)], as N -* oc. Also, the locations of the extrema of FN (x), nearest to xs, occur at

x = _s,+ = xs ± 7r/(N + 1) + O(N-2), as N ---* oe. More precisely (see, e.g., Carslaw [2])

lira FN (_s,+) : f(x+) + f(x-_) =k 1 Si(Tr)If (xs)]
N_oo 2 "n"

and hence

(2.1)

Here

lira {FN (_.+ ) - FN (_/,,_)} = 2 Si(_r)[f (x,)].
N---*oo 71"

2 Si(_r) 2 f_ sin (u)du - 1.17898.
7r 7r Jo U

We now observe that, if we define a new sequence of partial sums

(2.2) ON (x) = FN (X + 7r/(g + 1)) - FN (x -- r/(Y + 1))
(2/lr) Si(Ir)

then, as N ---* oc, DN (x) --* 0, if f is continuous at x, but DN (x) ---* [f (xs)], if x ----xs is a point of simple

discontinuity of f. Thus, a simple method of identifying initial estimates of the points of simple discontinuity



of f, as well as the corresponding jumps, is to find those points in the interval (-_, _] for which the sequence

{DN (x)} converges to a non-zero constant, as N --* co. At these points, DN exhibits peaks, which become

narrower, with increasing N. More specifically, initial estimates of the points of simple discontinuity to f

can be obtained by locating the extrema, say xs, of DN, such that the corresponding values DN(_s) do not

tend to zero, as N -* co. For such a point, DN(&s) provides an estimate of [f (xs)].

We now illustrate this idea with two examples.

Example 1. Let f be defined by

O, O<x<l,

l-x, 1<x<3,

(2.3) f(x)= 5x 2-37x+67, 3<x<4, , f(x+2r)=f(x).

x 3 - 15x 2 -4-75x - 125, 4 < x < 5,

O, 5 < x < 2_',

This function has only one point of simple discontinuity, namely, at Xl -- 3. However, it has multiple contact

discontinuities; one of order 1 at x2 = 1, one of order 2 at x3 = 4, and one of order 3 at x4 = 5. The jumps

in f and its derivatives at these points are summarized in Table 1.

Points_

Jumps_ X2 = 1 X 1 = 3 X3 = 4 X4 = 5

[1(.)] 0 3 0 0

[f'(.)] --1 -6 0 0

[f"(.)] 0 10 -16 0

[/"(.)] 0 o 6 -6
Table 1: Exact locations and magnitudes of the discontinuities for Example 1.

A representative plot of DN(X) for this example is shown in Fig.1. By finding the extremum of DN

closest to x ----3, we can estimate both the location and magnitude of the simple discontinuity of f at this

point. The absolute error in estimating the point of discontinuity, and the relative error in estimating the

corresponding jump in f, using DN, are summarized in Table 2 for several values of N. Also, in Figs. 2 and

3, we have plotted these errors (suitably normalized) as a function of 1IN. These plots suggest that, using

DN, we can approximate the location of the simple discontinuity of f with an error that is O (N --2) , and

that we can approximate the associated jump with an error that is O (N -1) , as N ---* oc.

N

16

32

64

128

256

Absolute Error in _1 Relative Error in DN(Xl)

3.2. 10 -2 3.48.10 -1

9.4.10 -3 1.95.10 -1

2.6. 10 -3 1.07.10 -1

6.8. 10 -4 5.34. 10 -2

1.7.10 -4 2.72.10 -2

Table 2: Errors in the initial approximations to the location and magnitude of the simple discontinuity in

Example 1 using the partial sums {DN(X)}.

Example 2. Let f be defined by



0, 0 < x < 1,

e x, 1 < x < 2,

(2.4) f(x) = sin(_), 2<x <5, ' f(xW27r) = f(x).

0, 5 < x < 27r,

Here, f has three points of singularity (with non-zero values of [f(k)(x)] at each of these points), and is

analytic between these points. (This example has been used as a "benchmark" example by several other

investigators. We will use it in later sections to compare our results with theirs.) The errors in locating

the point of simple discontinuity at Xl = 1, along with the errors in approximating the corresponding jump

[f(xl)], are summarized in Table 3 for several values of N. The magnitude of the errors corresponding to

the simple discontinuities at x2 = 2 and x3 -- 5 are similar to those reported in Table 3. When these errors

are plotted as ftmctions of 1/N, we obtain graphs that are qualitatively very similar to those shown in Figs.

2 and 3.

It can be shown that the rates of convergence of our approximations observed in these two examples hold

in a more general setting. In Appendix A, we outline a proof of the following theorem, which establishes

rigorously the rates of convergence of our approximations to {xs} and {[f(xs)]}, as g --* oc, using the partial

N Absolute Error in _1

sums DN (x).

16 1.9. 10 -2

32

64

128

256

Relative Error in DN (Xl)

1.8.10 -1

6.6. 10 -3 8.8. 10 -2

1.5- 10 -3 4.2. 10 -2

3.6- 10 -4 2.1. 10 -2

8.8- 10 -5 1.0. 10 -2

Table 3: Errors in the initial approximations to the location and magnitude of the simple discontinuity at

Xl = 1 in Example 2 using the partial sums {Dg(x)}.

THEOREM 2.1. Let f(x) be a 27r-periodic Lipschitz function with no points {x_} of simple discontinuity

in the interval (-Tr, Tr]. Then, as N --* oo, the partial sums DN (x), defined in Eq.(2.2), converge to zero

for all x _ x_, and converge to [f(xs)] at x = xs. The point xs, at which DN (x) attains its extremum in a

neighborhood of xs, approximates the point xs to within an error which is 0 (N -2) , and the corresponding

value Dg(Ycs) approximates [f(xs)] to within an error which is 0 (N-l), as N --* _.

3. Points of simple discontinuity - improved estimates. We assume that the number no of simple

discontinuities of f, as well as initial estimates xs and Jo,s = ON(if;s) of xs and [f(xs)], respectively, for

s = 1, 2, ..., no, have been obtained using the method of the previous section. We now show how to improve

the quality of these estimates, by utilizing the asymptotic form of the coefficients {aj, bj}, expressed in terms

of the parameters {x_ } and { [f(xs)] }, and a least-squares approximation technique.

The proof of the following lemma follows from the definitions (1.1) and by the repeated use of integration

by parts (see, e.g., Kreyszig [14], pp. 489-493).

LEMMA 3.1. Let f be a 27r-periodic Lipschitz function, with singularities at a finite number of points, say

at x = x_, s = 1, ..., n, in the interval (-7r, 7r]. Then, for any non-negative integer M, the Fourier coe_cients



of f can be expressed as

1_-_{ (L_J(--1)k+l [ ])aj = - sin(jxs) j2k+l f(2k)(xs)
71" s=l \ k=0

/+ cos(jxj [/_2k+1)(x,) + o (i/j'+'),
\ k=0

cos/ix,>

I-1>,+, }+o<,/,.+,>(3.1) + sin(jxs) __ j2k+2
\ k=0

as j ---* oo. In the upper limits of the inner summations, [qJ denotes the greatest integer not exceeding q.

We use Lemma 3.1 with M = 0 to write

nO

jrraj + E sin(jxs) If (xs)] : O (j-l),
s:l

_o

(3.2) jTrbj - Ecos(jxs) If (Xs)] = O (j-l) ,
s=l

as j --* oc, and then define a weighted least-squares error function

(3.3) _=_ (,,,...,_o0,_o,,,...,_o,,o)-
N

E w,_o>,
j=N+I-R

(3.4) E_ °) -- j_raj + sin(j_) Jo,_ + j_rbj - Ecos(j&s)J0,s
s=l /

Now, given the coefficients {aj,bj}, we seek to determine the values of :_1, ..., _,,o, J0,_, -.. , JO,no, say x_,

xno, Jd,1, , 2* such that E is a minimum, i.e.,"'" ' "" Ogno'

(3.5) mi9 E (Scl,...,_no,Jo,1,...,JO,no) = E (x*l,...,x_o,J;,D...,J,_),no).
_:I )...)Jo,_ 0

We note that, in order to have a true least-squares minimization problem, we must require that R >_ no,

since there are 2n0 parameters to be estimated. However, we must also require that N - R >> 1, in order for

the asymptotic form of the Fourier coefficients to be valid. (We find the weighted least-squares strategy to

be particularly useful when we assign larger weights to higher order terms defined in Eq.(3.3). This is due

to the increasing accuracy of the asymptotic form (3.2) with the index j. )

From Eqs.(3.2)-(3.5), it follows that x_ --* Xs and J,*0,s --* [f (xs)], for s = 1, ..., no, as N --* c¢. More

precisely, for the case wj = 1, it follows from these equations that



[f'(x,)] 1
x* ----x_ + [f(x_)-----_ N 2 +O (l/N4), and

, [f"(x_)] O (l/N3), N oo.(3.6) Jo,s = If (xs)] N2 d- as --*

Thus, the parameters we wish to estimate have now been characterized as the solution to a certain

optimization problem. We shall demonstrate in later chapters that this formulation offers some nice advan-

tages over the approaches used by several other investigators. In particular, we can see, at least intuitively,

that the approximations determined by this approach should be less sensitive to "small errors" in the coef-

ficients {aj, bj}, due both to the least-squares nature of the problem, and to the fact that the definition of

E "averages" over several (i.e., 2R) coefficients.

To perform the minimization required by Eq.(3.5) in an efficient manner, we use the estimates ob-

tained by the method of Section 2 as initial estimates for the nonlinear weighted least-squares method of

Levenberg-Marquardt ([18], [19], [20]). Although the function in Eq.(3.5) can be minimized using a general

unconstrained optimization technique, the special structure of the gradient, the Hessian matrix, and the gen-

eral least-squares nature of E is exploited by the Levenberg-Marquardt method. In choosing an optimization

method, it is important to note that E is a badly scaled objective function, which exhibits highly oscillatory

behavior in some directions and very smooth, slowly changing behavior in other directions. In particular, a

"flat" region of E creates a problem for derivative based methods, because of the closeness of the derivatives

to zero in that region. To illustrate this behavior, in Fig.4 we have plotted E for Example 1 as a function of

5] and 30,1, near the minimum of E. In the figure we have set N = 32 and R = 12. For smaller values of R,

the oscillations in the 51 direction are even more pronounced. The problem of the ill-conditioned associated

Hessian matrix for E can be partially mitigated by assigning larger values to the weights wj, with increasing

index j, in Eq.(3.3).

From these observations, it is important to note that we require good initial estimates of {xs} and

{[f(xs)]} to initialize the search technique. Fortunately, the initial estimates obtained using the method

based on the partial sums DN, described in Section 2, are good and, in fact, are even better than we actually

require. For example, from the definition of E (see, also, Fig.4) we see that the width of each "valley" in the

5:s-direction is O(1/N). Thus, to begin a search in the "proper valley", the initial estimate of each xs should

lie within a distance that is at least O(1/N) of x_. From Theorem 2.1, we see that our initial estimates lie

within a distance which is O(1/N 2) of xs.

To illustrate this method, we again consider Examples 1 and 2. For Example 1, we use the initial

estimates obtained in Section 2, whose errors are shown in Table 2, as starting values for the weighted

least-squares method. The errors in the approximations to the discontinuity location Xl = 3, and the

corresponding jump in f, are summarized in Table 4 for several values of N, and are plotted (with suitable

normalization) in Figs. 2 and 3. In Eq.(3.3), each wj = j.



N (R) Absolute Error in x_ Relative Error in J_,l

16 (8) 1.14.10 -3 1.02.10 -2

32 (12) 2.7.10 -3 2.45.10 -a

64 (15) 6.05- 10 -4 2.91 • 10 -4

128 (20) 1.45- 10 -4 4.86.10 -5

256 (28) 3.38 • 10 -5 2.45- 10 -5

Table 4: Errors in the estimates using the LSPE method of the location and magnitude of the simple

discontinuity for Example 1.

Tables 4 and 2, as well as Figs. 2 and 3, illustrate that our approximations to both the location of

the discontinuity and the associated jump have improved. In particular, they illustrate that, using the

optimization idea, the order of the approximation to xl remains O(N-2), but with a smaller proportionality

constant. (Using Eqs.(ll) and Eq.(A.9) of Appendix A, we see that this constant is smaller by a factor of

(TrSi(Tr)) -1 -- 0.172.) The order of the error in the associated jump in f has improved from O (N -1) to

O(N-2)
For Example 2, we again use the estimates from Section 2, whose errors are givcn in Table 3, to start the

weighted least-squares method. The errors in the discontinuity location Xl = 1, and the corresponding jump,

for different fixed values of N, are summarized in Table 5. The order of the errors for the discontinuities at

x2 -- 2 and x3 = 5 are similar.

N (R) Absolute Error in x_ Relative Error in J_,l

32 (12) 1.59- 10 -3 2.93.10 -3

64 (15) 3.1 • 10 -4 5.96.10 -4

128 (20) 7.22.10 -5 9.52.10 -5

256 (28) 1.63.10 -5 3.04- 10 -s

Table 5: Errors in the estimates using the LSPE method of the location and magnitude of the simple

discontinuity at xl = 1 for Example 2.

4. Discontinuities in f_(x) = initial estimates. To find initial estimates of the discontinuities in f',

we are tempted to apply the method of Section 2 directly to the differentiated Fourier series partial sums.

However, due to the presence of simple discontinuities in f, the differentiated Fourier series does not converge

in a neighborhood of these points. Lanczos' ([16], pp. 61 - 74) "sigma factor smoothing" provides one way

to mitigate this problem, but not to overcome it. The modification of the Fourier coefficients by the sigma

factors causes the differentiated series to converge at all points where f_ (x) is finite. However, even after

smoothing, the series diverges at all points where the derivative of the original function does not exist.

We now show that a slight modification and extension of the method based on the partial sums {DN},

described in Section 2, can give us initial estimates of the discontinuities in f' which arc sufficiently accurate

for our purposes. To see how this can be done, we use the (improved) estimates {x_, J_,8 } obtained in the

previous section to define a new sequence of Fourier coefficients _a (°), b(°)_ by
L J J J

(4.1) 1 "°
a_ °) = aj + -_ Z J_, 8sin(jx*s)' b_°) = bj - J_,8 cos(jx_),

8=, r3

for j ----1, 2, ..., N. (Intuitively, all we are doing here is "subtracting off" our best estimate of the parts of the



coefficientsrelatedto thesimplediscontinuitiesof f.) We then define a new sequence of partial sums

N C )sin(ix)}FI'N -_ -_X E {a_ 0) cos(jx)+

j=l

N

(4.2) = E {a_ Dc°s(jx) +b_l) sin(jx)} '
j=l

o?_j i0) b?--£%
which we can think of as the derivative of our original partial sum, but with the effect of the simple discon-

tinuities "subtracted off". The coefficients in F1,N have the asymptotic form

----- COS(jXs) If (Xs)] - cos(jxs)J_, s
71" s=l

(4.3)
rj E sin(jx_) If' (xs)] + O (j-2),

s=l

b 1) = __1 sin(jxs)[f (x_)] - smOxs)J_, _
71" s=l

1 711

+--: E cos(jx_) If' (xs)] + O (j-2),
7rJ s=l

as j _ _. Here nl is the (unknown) number of points of discontinuity in f'. (We shall assume that nl > no,

by including all of the points of simple discontinuity of f in the set of points where f' may be discontinuous.)

Using Eqs.(11), we write Eqs.(4.3) as

no (j _) (1)ttj-(1) __-- _1 s=iE[fl! (xs)] /V2 sin(jx,) + O

1 -1

E [f' (x_)l sin(jx_) + O (j-2),
s=no-{- 1

no J cos(jxs) + 0 -_(4.4) b_l) = 1 E[f, (xs)] N2
71" s=l

1 nl

+_-j E [f'(xs)lc°s(jxs) + O (j-2),
s=no + l

as j --* c¢. (Here the points {xs }, s -- no -4- 1,..., nl, correspond to contact singularities of f of order one.)

We now make two observations. First, by comparing Eqs.(4.4) and Eqs.(3.1), we see that, for x near

the contact singularity at Xs, s -- no + 1, ..., nl, the partial sums {F1,N} behave like a function which has a

simple discontinuity at this point of magnitude [ff (Xs)]. Thus, if we define a new partial sum D1,N(X) as in

Eq.(2.2), but based on the partial sum F1,N, instead of FN, i.e.,

(4.5) D1,N (x) = F1,N (x + 7r/(N + 1)) - F1,N (x -- _r/(N + 1))
si( )



then it follows that

D1,N(Xs) ---* [f(xs)], at a point of contact discontinuity,

as N --* co. Second, to investigate the behavior of D1,N(X) near the point of simple discontinuity at x,,

s = 1, 2, ..., no, we first observe (following the same reasoning as in Carslaw [2]) that

lira F1N (_?8,±) = f'(x+_ ) + f'(x:) ± l (si(r) - l ) [f' (x_)].N--*oo ' 2 r

Thus, it follows that

\ Si(r) ] [f'(xs)], at a point of simple discontinuity,

as N _ oc. (Here (Si(r) - I/R)/Si(r) - 0.82812.) For any point x that is not a point of simple discontinuity

or contact discontinuity of f, D1,N(X) _ O, as N --* co.

To illustrate these ideas, we use them to find initial estimates of points of first order singularity of f for

Example 1. In Fig.5, we have plotted D1,N for this example with several values of N. The absolute errors in

the estimate of the point of contact discontinuity at x2 --- 1, and the relative errors in the estimation of the

associated jump If'(1)], using the partial sums of D1,N, are summarized in Table 6 for several values of N.

The relative errors in the estimation of the jump [f' (3)] are also listed. Similar to the method of Section

2, we can show, in general, that, using the partial sums {D1,N}, the error in approximating the locations

of the points of contact discontinuities is O(N-2), while the error in the approximations to all of the jumps

[f'(x_)] is O(N-1).

N

16

32

64

128

256

Abs. Error in x2 Rel. Error in D1,N(:_2)]

2.1.10 -3 7.4. 10 -3

2.4.10 -5 1.5.10 -3

1.2.10 -5 7.8.10 -5

5.4.10 -7 2.0. 10 -6

2.7.10 -8 2.9. 10 -6

Table 6: Errors in the initial estimates of the discontinuities in

{D1,N } .

Rel. Error in D1,N(:_I)]

4.5.10 -1

2.2.10 -1

1.1.10 -1

5.1.10 -2

2.5.10 -2

_' for Example 1 using the partial sums

5. Discontinuities in f'(x) - improved estimates. Once the number of discontinuities in f and f_

are determined, as well as initial estimates of the locations and magnitudes of all of the jumps in f and f', we

again seek to improve these estimates by using a least-squares fit of the asymptotic form of the coefficients

to the given coefficients. Using Lemma 3.1 with M = 1, we now define

(5.1) =- 30ol,3,,,,,
N

E ,. l_'_(1 )

j=N+I--R

where

E} 1) - j27raj + j sin(j&.)J0,. + cos(j&,)&,, ÷

10



(5.2) ( 1)j21rbj - _ { j cos(j&8).]o,8 - sin(j_,)Jl,_
s=l

(Note that, for ease of notation, we have let the index s range up to nl, with the understanding that Jo,s = 0,

fore -- no+ 1, ..., hi.)Then, given the coefficients {aj, bj}, we seek to determine the values of {:r,, 3o,_, Jl,_} ,

say {x*,J_,s, J_,s}, s = 1,2, ...,hi, such that E is a minimum, i.e.,

(5.3) ) * * J'* .min E _l, ..., .]0,1, .-., ffl,nl =E(Xl,...,J_,D..., 1,nl)
_o,Jo,o,Jl,.

(Since there are now 3nl parameters to be estimated, we require R > 3nl/2.)

From Eqs.(5.1)-(5.3), it follows, for the case when wj -- 1, that

• ( )x_ =x_+O 1/N 5 , l <s<no,

• ( )x s =xs+O 1/N 3 , no+l <s<nl,

(5.4) J_,8 = [f (xs)]- [/" (xs)]_--52 +0(1/N3), 1 < 8 < no,

J;,s=[f'(xs)]+O(1/N2), l<s<nl,

as g ----_ oo.

In Table 7, the absolute error in estimating the point of contact discontinuity at x2 -- 1 for Example 1,

and the relative errors in the estimation of the jumps [if(l)] and [f'(3)], using the method just described,

are summarized.

. j. • j.N (R) x 2 1,2 Xl J_,l 1,1

32 (15) 2.1.10 -4 1.47.10 -2 3.29.10 -5 4.16.10 -3 1.97.10 -2

64 (18) 8.14.10 -5 2.0- 10 -3 1.95.10 -6 1.00.10 -3 2.72.10 -3

128 (20) 1.93.10 -6 7.19.10 -a 7.24.10 -7 2.41.10 -4 3.17.10 -3

256 (46) 6.4.10 -7 1.56.10 -a 2.00.10 -9 6.41.10 -5 2.17.10 -4

Table 7: Errors in the estimates of the discontinuities in f and

with M --- 1.

_' for Example 1 using the LSPE method

Comparing Table 7 to Table 6 illustrates that the errors in the estimates of [f'(xl)] are significantly

smaller using the least-squares approach. Of course, we also obtain "new" estimates of the location and

magnitude of the discontinuity in f at Xl -- 3. The corresponding errors are also shown in Table 7. We

observe that the errors in the estimates of [fl(x2)], and the location of the first order contact discontinuity

(at x2 -- 1) are somewhat greater when compared with the errors in the initial estimates they use. This

should not, however, be a cause of concern, as the estimates that are obtained using the LSPE method are

good, and are within the order of accuracy that is predicted for them (see Eqs.(5.4)).

6. Estimation of discontinuities of order M, for M > 2. Assume now that we have used the

methods of the previous sections and that we have obtained, by the LSPE method, estimates {x_ } and

{ J_,_ } of the locations {xs } and the associated jumps [f(k)(xs)], respectively, of the singularities of f, for

11



k = 0, 1, ..., M - 1, and s = 1,2, ..., riM-l- We define

'nM-l_ (L(M___)I2j ( 1)k+lj2k+l
_(M-l) 1

=_,-- ).sinO<)tsj

71" s=l \ k:O

+ eos(jx:) j2k+2 2k+l,s
\ k=0

blM-l): b,- -1o_1 cos(,x:) J;k..
71" s=l

+ sin(jx*) j2k+2 J_k+l,s ,
\ k=O

and the partial sums

M N

j=l

N

=E {o7)co (J+
j=l

where

LM/2j zM j,(M--1)
_(M) _ (_I)[M/2JjMa_.M--D, b_M) = (-1) j uj , M even,uj

a_M)--(--1)[M/2JjMD_M--1)_ b_M)=_--(--1)LM/2JjMa_ M-l), M odd.

Here, in general, nj denotes the number of points in the interval (-lr, lr] where f(k) has a discontinuity for

at least one value of k _< j.

To find initial estimates of the locations and magnitudes of the discontinuities in f(M) we define

DM N (x) = FMJV (x + 7r/(N + 1)) - FM,N (x -- rr/(N + 1))
' (2/_r) Si(Tr)

Then it follows that

---* _ OLM,s" [f(M)(x_)] , S = 1,2,...,riM,DM,N(X,)
t 0, otherwise,

as N --+ oo. Here (_M,_ is a scalar that depends on both M and s. In particular,

{ (Si(Tr) - 1/rr)/Si(rr), 1 < s < no,_2,s= I, no + I < s < n2,

and

{ (si(.) - 1t_ - siva)/si(_), 1 <, < -o,
a3,8 = (Si(rr) - 2/Ir)/Si(lr), no + 1 < s < _1,

1, nl +1 < s < ha.

12



Thus, DM,N (X) can be used to find initial estimates of the locations and magnitudes of the jumps in f(M)(x),

as in Sections 2 and 4.

To illustrate these ideas, we set M = 2 and use D2,N(X) to estimate the locations and magnitudes of

the jumps in f" for Example 1. The results are summarized in Table 8. (We find that D2,N(X) --_ 0 in a

neighborhood of x = x2 -= 1, suggesting that [f"(x2)] is zero.)

N

32

64

128

256

Abs. Error in D2,N(:_2) Abs. Error in x3 Rel. Error in D2,N(5:3)

2.57.10 -1 1.94.10 -3 3.07 X 10 -2

1.03.10 -1 5.07 x 10 -a 1.53 x 10 -2

3.49.10 -1 1.33 x 10 -4 7.73 x 10 -3

3.03. 10 -1 3.30. 10 -5 3.89.10 -3

Table 8: Errors in the initial estimate of the discontinuities in f" for Example 1 using the partial sums

{D2,N}.

Once initial estimates of the locations and magnitudes of the jumps in f(M) have bccn determined, wc

again improve these estimates by using a least-squares fit to the asymptotic form of the coefficients. Thus,

we define

N

j=N-R-t-1

[M/2]

(6.2) E_M)-- (jM+lTraj--n_=_ [sin(j&s) lk_-_=o(--l)k+ljM-2kj2k,s}+

COS(jXs) _ (--1)k+ljM-1--2kJ2k+l,s +

M+%bj -_ cos(je.) (--1)_jM-2kNk,_ +
s=l

sin(j&_) (--1)k+ljM-l-2k J,
= 2k+l,s ,

and choose values of the riM(2 + M)parameters {:_s} and I,]k,s}, say, _x* * },s, J_,_ = 1,2, ..., nM, k :

0, 1, ..., M, so that E is a minimum, i.e.,
%

l_n E(Xl,...,30,1,...,JM,nM) : E(x_,...,,]_,l,...,,)_Pl,nM).
_o,...,J_:,_

Here R >_ riM(2 + M)/2, with N - R >> 1.

When we apply these ideas to Example 1 with M ----2, we obtain the results whose errors are summarized

in Tables 9 and 10. (We find that the estimates obtained for [/"(x2)] suggest, rightfully, that [f"(x2)] = 0.)

Setting M = 3, we find initial and improved estimates of the contact singularity of order 3 at xa = 5

for Example 1. In this case, the maximum error for the location or associated jump in any of the improved

estimates is of the order of 10 -13. To understand why the errors should be so small, we note that, since f

13



of Example 1 is piece-wise polynomial, of degree at most 3, the assumed form of the Fourier codticients in

Eq.(6.2) is exact for M _> 3. Hence, the estimates obtained by the method are "essentially exact", to within

the error inherent in the minimization procedure.

N (R)

32(18)

64(22)

128(32)

256(56)

1.83.10 -6

6.3.10 -s

1.0.10 -9

8.75- 10 -11

J_, 1

2.92.10 -5

1.33.10 -6

1.03- 10 -7

2.73- 10 -8

*
1,1

5.33.10 -4

1.03.10 -4

5.67.10 -6

1.67.10 -6

Y_, 1

5.4- 10 -3

3.22.10 -3

9.8- 10 -4

4.5.10 -4

Table 9: Errors in the estimates of the discontinuity at xl -- 3 and the associated jumps for Example 1

using the LSPE method with M ----2.

N (R) x_ J" J.*1,2 2,2 X_

32(18) 3.95- 10 -5 5.72- 10 -4 2.3- 10 -2 5.4- 10 -4

64(22) 3.0.10 -6 8.09- 10 -6 9.1 • 10 -3 1.14.10 -4

128(32) 5.0.10 -7 2.8.10 -6 6.67. 10 -3 2.9- 10 -5

256(56) 1.96- 10 -s 1.5.10 -6 1.43. 10 -3 7.06.10 -6

Table 10: Errors in the estimates of the discontinuities at x2 = 1 and x3 -- 4

for Example 1 using the LSPE metho( with M = 2.

N(R) x_ J_,l J*1,1

32(15) 3.29- 10 -5 1.55- 10 -3 2.44- 10 -2

64(18) 1.17.10 -6 3.49- 10 -4 3.28.10 -3

128(24) 1.65- 10 -s 7.35- 10 -5 2.65- 10 -4

256(41) 2.15- 10 -9 1.77- 10 -5 1.63- 10 -4

Table 11: Errors in the estimates of the discontinuity at xl --- 1 for Exam

with M = 1.

J_,3

7.75- 10 -4

1.99.10 -4

1.25- 10 -4

1.24- 10 -5

and the associated jumps,

_le 2 using the LSPE method

On applying the above mentioned ideas to Example 2 with M = 1 and M = 2, we obtain results that

are qualitatively similar to those for Example 1. The results for the discontinuity at xl = 1 are summarized

in Tables 11 and 12. The results for the other points of discontinuity in f are qualitatively similar to those

reported in Tables 11 and 12.

N(R)

32(15)
64(22)

128(32)

256(60)

X_ Y_,l Y_',l J_,l

2.96.10 -6 1.29.10 -5 3.54. 10 -3 1.38.10 -2

1.28.10 -7 8.29- 10 -7 7.29.10 -4 3.34.10 -3

6.47- 10 -9 2.26.10 -s 1.63.10 -4 3.94- 10 -4

3.72 • 10 -l° 2.92- 10 -9 3.91.10 -5 1.16.10 -4

Table 12: Errors in the estimates of the discontinuity at xl = 1 for Example 2 usinl

with M = 2.

the LSPE method

For a general value of M _> 0, we conjecture that the estimates obtained from the LSPE method satisfy

(6.3) x: ----xs -i- O(N-M-2), s ----1, 2, ..., n,

and

(6.4) J;,,= [f(k)(x,)] +O(N-M-I+k), k=O, 1,...,M, s= l,2,...,n.
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Although we do not have an analytical proof of these results, they have been verified using Mathematica

[22] for 0 < M < 4 and for 1 < n < 6. Also, the results of several numerical experiments are consistent with

them.

7. Comparison with other methods. Three recent methods with a similar goal of obtaining esti-

mates of the locations of the discontinuities of f from a finite number of its Fourier coefficients have been

proposed by Eckhoff [3], Kvernadze [15], and Bauer [1].

Eckhoff [3] develops an algebraic equation of degree n for the n singularity locations in each period of f.

The coefficients in his equation are obtained by solving an algebraic system of n equations, determined by

the known coefficients in the truncated Fourier series. If discontinuities in the derivatives of f are considered,

in addition to the simple discontinuities of f, that algebraic system is nonlinear in the unknown parameters.

The degree of the algebraic system depends on the desired order M for the reconstruction, with a higher

value of M normally leading to a more accurate determination of the singularity locations. The jumps in f

and its derivatives, up to the order M, can be obtained by solving an additional linear algebraic system of

equations. However, the robustness of the method deteriorates with increasing values of M. This is due to

the ill-conditioned nature of the equations that must be solved.

Kvernadze [15] proposes an algorithm to determine the discontinuities and the corresponding jumps

in f using certain identities based on the partial sums of its differentiated Fourier series. Kvernadze first

analyzes an expansion formula for the approximation of a 2_r-periodic, piecewise smooth function with one

discontinuity. An appropriate linear combination of certain identities, obtained via derivatives of different

orders, is then used to significantly improve the accuracy of the estimation. It is then suggested that

Richardson's extrapolation method be used to refine the accuracy even further. For a fimction with multiple

discontinuities, Kvernadze establishes a formula that eliminates all but one discontinuity in the function,

and then treats the new function as one with a single point of discontinuity. Kvernadze does not address

aspects of the numerical complexity and robustness of his algorithm.

Bauer [1] uses the idea of band pass filters to find the discontinuity locations. He makes no effort to

estimate the associated jumps or the points of contact discontinuities. In his work, Bauer introduces the idea

of a global filter and a local sub-cell filter. There is a trade off between these two filters. Smaller errors can be

obtained using a local sub-cell filter, but the accuracy decreases if there is a contact discontinuity. His global

filter can be computed "once" and stored in memory, but the local filer cannot be computed until initial

estimates of the locations of the discontinuities are determined. A comparison of Eckhoff's, Kvernadze's,

and Bauer's methods show that, for a given value of N, Eckhoff's results are consistently more accurate

and robust. Also, Bauer's local-filter method appears to be unable to control the error if the function has a

contact discontinuity.

The LSPE method we are proposing is based on a simple idea, is remarkably robust (see the next

section), and requires only "standard" optimization techniques to implement. The method appears to

provide estimates of the discontinuity locations which are of the same order of accuracy (or better) than

those of Eckhoff, Kvernadze, and Bauer. In addition, the LSPE method provides estimates (of high accuracy)

of the associated jumps in f and its derivatives at the points of discontinuity.

To illustrate this comparison, the function f of our Example 2 was also considered by Eckhoff, Kvernadze,

and Bauer. The absolute value of the largest error in the estimation of the points of simple discontinuity of

f, obtained by Bauer, by Eckhoff, by Kvernadze, and by the LSPE method are summarized in Tables 13-16,

for different values of N and M.
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N 32 64 128 256

Local Filter 1.4.10 -5 1.44.10 -6 5.62 • 10 -9 3.14- 10 -9

Global Filter 1.5.10 -3 8.77.10 -5 2.26.10 -6 2.71 • 10 -7

Table 13: Maximum errors in the estimates of the singularity locations for Example 2 using Bauer's

method.

N 32 64 128 256

M = 0 1.4 • 10 -3 3.1 • 10 -4 7.3- 10 -5 1.8.10 -5

M = 1 2.2.10 -5 1.0- 10 -s 5.6.10 -s 2.7.10 -9

M -- 2 4.0.10 -8 1.2.10 -7 5.1 • 10 -9 2.7. 10 -l°

M = 3 1.2 • 10 -7 2.8.10 -l° 5.3- 10 -11 4.4- 10 -5

Table 14: Maximum errors in the estimates of the singularity locations for Example 2 using Eckhoff's

method.

Tables 13-16 illustrate the convergence of all the methods. The results obtained by Eckhoff's method

and the LSPE method are generally more accurate (for M > 2) than Bauer's results and Kvernadze's results.

The robustness of Eckhoff's method deteriorates when M > 3. This pattern becomes evident on comparison

of results of his method to our results when M = 3. We find that for larger values for N, Eckhoff's method

deteriorates significantly, while the LSPE method appears to show no such adverse effect.

N 32 64 128 256

Kvernadze 1.7.10 -4 6.1 • 10 -7 1.4.10 -s 3.5.10 -11

Table 15: Maximum errors in the estimates of the singularity locations for Example 2 using Kvernadze's

method.

N 32 64 128 256

M --- 0 1.59- 10 -3 3.31 • 10 -4 7.73.10 -5 1.78.10 -5

M = 1 1.45- 10 -4 1.17.10 -8 2.17.10 -7 1.44.10 -s

M ----2 2.95. 10 -8 1.38.10 -7 7.1 • 10 -9 4.26.10 -1°

M ----3 6.86- 10 -s 4.14.10 -9 4.9- 10 -11 1.47.10 -13

Table 16: Maximum errors m the estimates of the singularity locations for Example 2 using the LSPE

method.

8. Robustness of the LSPE method. Intuitively, the LSPE method should possess good robustness

characteristics, due primarily to the underlying least-squares nature of the method and the fact that the

objective function is an "average" involving several Fourier coefficients. Although we have not carried out a

detailed analysis of the robustness of the LSPE method, in this section we consider some of its robustness

properties suggested by three more examples.

Example 3. We consider again the function of Example 2, but we now contaminate its Fourier co-

efficients by introducing some random errors. We then apply the LSPE method using these contaminated

coefficients, and compare the results with those obtained using the original ("exact") coefficients. Letting

{a j, bj } denote the exact Fourier coefficients of f, we define the new coefficients

5j = aj + eaj, bj = bj + ebj, I < j < N,

where e_,j and eb,j are independent, uniformly distributed random variables on the interval [-c, e], with e > 0

specified.
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Therelativeerrorsin theestimatesof xl = 1, as well as the corresponding jump in f, using the LSPE

method with M = 0, N = 64, and R = 32, are summarized in Table 17, for a range of values of c. The

estimates of Xl and [f (xl)] appear to improve only marginally with decreasing values of e in the range

considered.

10-2

10-3

10-4

0

1.48.10 -3 4.0.10 -2

2.0.10 -t 3.723- 10 -3

3.73- 10 -t 5.27- 10 -4

3.92.10 -4 1.77.10 -4

Table 17: Errors in the estimates of the location and the magnitude of the discontinuity at xl ----1 for

Example 3 using contaminated coefficients in the LSPE method with M = 0.

Results for the case M --- 1, N ----64, and R = 32, are summarized in Table 18. The estimates of Xl and

If (Xl)] appear to be relatively insensitive to the increase in the order for M, for the range of values of •

considered. However, there is a noticeable improvement in the estimates of If' (xl)] with decreasing •. This

sensitivity of the higher order jump estimates to • is explained by considering the form of Eq.(5.1) that is

used for the least-squares parameter estimation. The effect of a multiplier that is a power of j is likely to

have an adverse effect on parameters that are dependent on higher precision digits in the Fourier coefficients.

As a result, we see a noticeable increase in the accuracy of the estimate of [f'(xl)] with decreasing values of

• . (Errors for the other singularities of f are comparable to those in Tables 17 and 18.)

10-2

10-3

10-4

10-5

0

* ,/.Xl Jt_,l 1,1

7.52.10 -3 1.03- 10 -2 12.31

6.82.10 -4 1.53. 10 -3 0.97

6.92.10 -5 2.05- 10 -a 0.1

8.69.10 -6 3.72- 10 -4 1.49- 10 -2

1.97.10 -6 3.97.10 -4 5.51 • 10 -3

Table 18: Errors in the estimates of the discontinuity location and the associated jumps for Example 3

using contaminated coefficients in the LSPE method with M --- 1.

Example 4. To help assess the effect of the closeness of two points of discontinuity on the computed

results, for 0 < a < 2_- - 1 we define

x, l<x<l+a(8.1) f (x) = 0, elsewhere in [0,2r] ' f(x + 2_r) = ](x).

For this example f has discontinuities at Xl -- 1 and at x2 -- 1 + a. The relative errors in the estimates

of Xl and x2, as well as the corresponding jumps in f, using the LSPE method with M -- 0, N = 64 and

R = 15, are summarized in Table 19, for a range of values of a. All of the estimates of the parameters shown

appear to be relatively insensitive to the value of a in the range considered. Results obtained by Bauer's

method, on the other hand, appear to be significantly more sensitive to the distance between two consecutive

singularities, especially as a --* 0.
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Table 19:

a

0.1

0.5

0.9

2.0

x_ J*1,0 x_ J_,0

3.8" 10 -4 6.89" 10 -4 3.14- 10 -4 2.97" 10 -4

3.1" 10 -4 6.46" 10 -4 1.38- 10 -4 2.58" 10 -4

3.09" 10 -a 3.68" 10 -4 8.57- 10 -5 6.94' 10 -5

3.03" 10 -4 1.91- 10 -4 3.37- 10 -5 1.31" 10 -4

Errors in the estimates of the location and magnitude of the discontinuities for Example 4 for a

range of values of a using the LSPE method with M - 0.

Example 5. We now illustrate some of the robustness of the LSPE method with respect to noise

in sampled data. In this case, the Fourier coefficients of a function f are computed using a Fast Fourier

Transform (FFT) method applied to a data set of (slightly erroneous) functional values at evenly spaced

values of the independent variable.

We define f as the "usual" step function, but with small random errors, as

-l+el, 0 <x <Tr,(8.2) f (x) = 1 + e2, lr < x < 2_r, f(x + 21r) = f(x).

Here (1 and (2 are independent random variables that are uniformly distributed over the interval I-e, e], with

• > 0 specified. Then f has two simple discontinuities, at xl -- lr and at x2 -- 2_r. We observe that there are

two major sources of error in the computed Fourier coefficients. One source of error is the noise amplitude

• , which is introduced into f and, hence, into the sampled functional values. Another source of error is the

use of the FFT, which uses only a finite number of sample points. For example, using 2N + 1 sample points,

only the first 2N + 1 Fourier coefficients can be estimated, before aliasing occurs (see, e.g., Hamming [13]).

When error is introduced into the data, it is natural to expect the relative error in the computed Fourier

coefficients to increase with increasing index. As a result, instead of using the last R coefficients, we find

that it is better to base the LSPE method on some of the lower order coefficients. For our illustration, we

used a sample of size 65 (from which we can estimate the first 32 {aj} and (bj}), but we only use the ninth

through the fifteenth coefficients in the definition of E. The relative errors in the estimates of xl and If(x1)]

using the LSPE method, with M = 0, are summarized in Table 20.

N = 15, R = 7 Abs. Error in x_ Rel. Error in J_,l

Exact, e = 0 1.0 • 10 -17 1.0.10 -17

FFT, e ----0 1.33.10 -2 5.5 • 10 -3

FFT, • = 10 -2 1.28.10 -2 7.5 • 10 -3

Table 20: Errors in the estimates of the location and the magnitude of thc discontinuity for Example 5

using the LSPE method with M ----0. The Fourier coefficients are computed from complete and sampled

data.

From Table 20, we note that there is virtually no error if the exact Fourier coefficients (( ----0) are used

in the definition of E. If we compute the Fourier coefficients using the FFT based on the "exact" (e -- 0)

sampled data, we find that the relative error in the estimates of the point of simple discontinuity and the

associated jump at xl are of the order of 10 -2 and 10 -3, respectively. However, even when we set ( = 0.01

and again use the FFT to compute the coefficients, we find the errors remain essentially unchanged from the

case when e = 0.
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9. Reconstruction of f. In a companion paper [6], we introduced and studied a class of 2_r-periodic,

singular basis functions, which have special "built-in" discontinuities. In [6] it was proven that these func-

tions can be used to construct a sequence of approximations to a discontinuous function, which converges

exponentially to f in the maximum norm. However, the construction procedure requires knowledge of the

exact locations and magnitudes of all of the discontinuities in f and its derivatives.

In this section we briefly summarize how the approximating sequence should be modified when only

estimates of locations and magnitudes of the discontinuities in f and its derivatives arc known. In Appendix

B, we outline how the main proof in [6] can be modified to show that the estimates we have obtained by

the LSPE method are of sufficiently high quality so that we again obtain an approximating sequence which

converges exponentially to f in the maximum norm, for x in the domain _. Here _ consists of the interval

[-_r, 7r], with the union of certain "small" open intervals surrounding the points of discontinuity of f removed.

(The measure of _ converges exponentially to 2r; see Appendix B for details.) In addition, the derivatives

of this sequence converge exponentially to the corresponding derivatives of f, for x E _.

The singular basis functions {Sn(x)} are defined by

2k-3/2
S2k(x) -

(2k)!

OO

sin(x) (1 - cos(x)) k-l/2 = _ b2k,j sin(jx),,
j=l

(9.1) S2k+l(X)-- --
2k-1/2

(2k + 1)!

C_

(1- COS(X)) k+l/2 - a2k+l,0 + Z a2k+l,j Cos(jx),2
j:l

k+14 k+l 1
aak+l,j = (--1) zr k , b2k,j = --ja2k+l,j,

1-I(4j2 _ (2i + 1)2)
i=0

for j = 0, 1, 2, ... , and k -- 0, 1, 2, .... (For convenience in some of the formulas below, we also define

a2k,j = b2k+l,j = 0, for k > 0.) It is straightforward to show that Sin(x) is Cm-l[-Tr, r], while the jump in

its mth derivative at x --- 0 is 1.

Now let M be a nolmegative integer and let the 2_r-periodic function f have possible discontinuities in

f(k), for 0 < k < M, at x = xs, s = 1,2, ...,n, where -_r < xs < r. We define

(9.2) g_(x) - _ _-_ A*k,sSk(x- x;),
k=0 s=l

where the constants {A_,j} are determined recursively by

k-1

(9.3) Ai,8=J_,8-ZA,*,8 [S_k)(O)], s : l, 2, ...n, k=O,t,...,M.
i=O

Here x; and J_,8 are the estimates of xs and [f(k)(xs)], respectively, determined by the LSPE method,

as in sections 3, 5, and 6. (We note that, if x* = xs and ifJ_, s = [f(k)(x,)], then f(x) - S_(x) will be

cM[--_r, r], at least, and hence its Fourier series will converge at a faster rate than the Fourier series of f.

See [6] for details.) Once S_4(x) has been determined, we define the family of approximations f_,N to f by

(9.4)
a (oM) N

f_4,N(x) = S*M(X) + T + _ a_M) cos(ix) + b_M) sin(jx),
j=l
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a_M) = aj - y_ A*k,s {aa,j cos(ix;) - bk,j sin(jxs)},
k=0s=l

M n

(9.5) b_M) = bj - _ __A_,_ {ak,j sin(jx_) + bk,j cos(jx*)},
k=0 s=l

j = 0, 1,2,...,N.

To illustrate the reconstruction method described above, we reconsider Example 1. We reconstruct f

and a few of its derivatives using the first 2N + 1 of its Fourier coefficients. The estimates of the singularity

locations and the associated jump parameters used are obtained by the LSPE method, with M = 2 and

N = 32. Figure 6 illustrates the excellent agreement between f (solid line) and f_,32 (dashed line) . From

Figs.7 and 8, it is evident that the first two derivatives of f_,32 also agree, to within the plotting accuracy,

with the corresponding derivatives of f. Figure 8 illustrates that there is a slight deterioration in the level

of agreement between f" (solid line) and (f_,32)" (dashed line) at points that are close to the points of

singularity of f". However, this deterioration is expected and can easily be eliminated by increasing M

and/or N.

10. Conclusions, discussion, and future directions. A simple, accurate, and robust method (the

LSPE method) has been introduced and studied to estimate the locations and magnitudes of the jumps in a

function f and its derivatives, using only the information contained in the first 2N + 1 Fourier coefficients of

f. These estimates can then be used with a simple class of periodic "singular basis functions" to construct a

sequence of approximations which converges exponentially to f, and its derivatives, as N _ oc, in the maxi-

mum norm, outside the union of a finite number of small open intervals that contain the points of singularity

of f. The total measure of the union of all such "small" intervals approaches zero exponentially as N --* co.

In particular, this implies that the effects of Gibbs phenomena can be completely eliminated, even when f

has several points of discontinuity. Also, the singularities of f may be either points of simple discontinuity,

or they may be points of higher order contact discontinuities. When compared with methods proposed by

other investigators, the LSPE method was found to be at least as accurate and, often, significantly more

accurate than other methods. Also, the LSPE method was found, in general, to be more robust and less

sensitive to the effects of "closely spaced" singularities than other methods.

However, there are some issues connected with the LSPE method that we feel need further study. For

example, a good rationale for the choice of the parameter R in the definition of the objective function

N

(10.1) E= y_ wjEj,
j=N+I-R

needs to be established. We have required that N - R >> 1, in order for the asymptotic form of the Fourier

coefficients to be valid, and that 2R is greater than the number of parameters being estimated. Intuitively,

the freedom to choose "larger" values of R has several advantages, including a smaller sensitivity of the

LSPE method to "small errors" in the Fourier coefficients. In most of the results reported in this paper,

the choice of R has been relatively ad-hoc, but some effort was made to keep it unchanged for each example

considered. However, we observed that, in some cases (in Example 2, for instance), for different values of

N the convergence rate of the optimization routine seemed to be somewhat dependent on the choice of R.

This sensitivity to the choice of R has yet to be studied in any detail and all of our studies in this regard

are preliminary in nature. It does seem reasonable, though, to conjecture that this sensitivity is due to the
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decreasing magnitude of the Fourier coefficients with increasing N. For large N and M, the limitation of

having only a finite amount of precision in the coefficients causes "large" relative errors in the coefficients

that are used. On the other hand, the idea of using larger values of R, for larger N and M, in order to

average out these relative errors, may not always be practical, as larger values of R may cause a slowing in

the convergence rate of the optimization method.

Also, a good criterion for the choice of the weights {wj } in the definition of E needs to be determined.

In particular, the proper assignment of the weights {wj } is crucial in the design of an optimal least-squares

optimization method. All the results reported using the LSPE method (unless otherwise noted) were obtained

using wj = j. Some experimentation with assigning the weights shows that this choice is not uniformly

optimal. However, all of our experimentation with {wj} has been preliminary, and more study is required

to determine the actual sensitivity of the LSPE method to the choice of wj.

Two important kinds of singularities in a function that are often encountered and which we have not

addressed are algebraic and logarithmic singularities. Unlike Lipschitz functions, the Fourier coefficients of

functions with these types of singularities do not have the same asymptotic form as for Lipschitz functions.

Consequently, a new method to determine the locations and characteristics of the singularities of such a

function need to be developed. Even after the singularities have been charactcrized, the basis functions

{Sn(x)} are no longer applicable, and some "new" basis functions with the appropriate algebraic or loga-

rithmic singularity must be constructed. For an algebraic singularity, one possible candidate for a new basis

function is

O_

a0

a(x,p)- Isin(x/2)lP = 7 + cos(j ),
j=l

where, for p > -1 ,

2 F ((p ÷ 1)/2)

ao = r(x +p/2)'
(-1) j F(p+l)

a3 = 2P F (l + j + p/2) F (1- j + p/2) ' j >_ l.

Here F (z) is the usual Gamma flmction. Near x = 0, we have

IxlP {l+O(x2)},a =

and, hence, G(x,p) could be used as a "basis function" to simulate a pth order algebraic singularity in a

function f. For a flmction with a logarithmic singularity, the function

o_ 1

L(z) - - log ]2 sin(x/2)l -- _ _ cos(jx),

might serve as an appropriate basis function, since, near x = 0,

L(z) = - log [x[ + O(x_).

We also feel that many of the ideas we have presented for Fourier series can be extended to other

orthogonal bases, as well. In particular, it is natural to expect "Gibbs-like" properties in "all" series using

orthogonal sequences that approximate discontinuous functions. Gray and Pinsky [12] report a Gibbs like

phenomenon for a Fourier-Bessel series of a piecewise smooth function, which displays a strange oscillation at

the origin, quite unrelated to the local behavior of f at that point. We feel that the problem of constructing

a high order accurate sequence of approximations using information from a finite set of general orthogonal

series coefficients can be addressed using extensions of several of the methods we have presented.
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In addition, we feel that the ideas presented here will find useful applications in several different areas.

Some particular applications currently being pursued include numerical shock capturing, image resolution

enhancement, and time series analysis.
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(A.3)

where

Appendix A. Convergence of initial estimates. In this appendix we outline a proof of the rates

of convergence as N --, c_ of the estimates {xs} of the locations {xs} and the estimates {DN(&_)) of the

magnitudes { [f(xs)] } of the simple discontinuities of f, obtained from the extrema of the partial sums {DN },

defined in Eq.(2.2).

Using Eq.(2.2) we can write

(A.1) sin(u) du DN(X) = sin {bj cos(jx) - aj sin(jx)}.
U

Then the condition that dDN/dX = 0 implies

(A.2) 0 = _--_.jsin _ {ajcos(jx) +bjsin(jx)}.
j=l

Using the asymptotic form (Eq.(a.1)) of the coefficients {aj, bj}, Eq.(A.2) can be written as

}0---- [f(zs)] sin _ sin(j(x-xs)) -
s=l (j=l

T.(x)-Esin _ (hjcos(jx)÷bjsin(jx)},
j=l

with hj = O(j -2) and bj = O(j-2), as j _ c_.

Let xk _ Xk + ek denote the location of the extremum of DN nearest to Xk. We then write Eq.(A.3),

evaluated at x ----xk, as

0 = If (xk)] sin
j=l

+E[f(x_)] Esin _ sin(jAk,s)
s=l j=l
s_k

(- If' (x_)] _-_ j sin
j:l

(A.4) --_-_[f'(x_)](_sin(-_+l)C°s(jAk")} ÷TN(_2k)'s=Ij=l
s_k

where A_,s -- Xk + ek -- Xs, for s _ k. Since f is assumed to have only a finite number of points of

discontinuity in the interval (-r, lr], we can assume that IAk,sl :> /_ > 0. Then, using elementary methods,

we can show that, for any A _ 0,

(A.5) Z sin _ _
j=l
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(A.6) N 1 ( jTr )E)--_sin _-_ cos(jA)=O(Y-1), m>_l,
j=l

as N --* c_. Using these results, we see that the second and fourth terms on the right side of Eq.(A.4) are

each O(N-1), as N --_ oo. Also, TN(fCk) = O(N-a), as N _ oc, since the coefficients {6j} and _bj_ are

each O(j-2), as j ---* oo. If we now assume that jek = o(1), as N ---* oo, for all j < N, we can write Eq.(A.4)
_ J

as

(A.7)

0=ek.(1 +O((Nek)2)).[f(xk)l_-_jsin _ -
j=l

fS'(x_/l• (1+ o ((Y_/_)). _ j sin _ + O(N-X).
j=l

We now use the facts that

N ( jTr ) (N+l)2_jsin _ - ;
j=l

-- + O(1),

(A.8) _1 (J_+l) fo_Sin(X)dx+O(N_ --)
j=l J sin = --X '

as N --* c_, to write Eq.(A.7) as

7r fo g sin(X) dx . [f' (xk)](A.9) Ck -- (N + 1)2 x If (xk)------]-+ O(N-3)'

as N --* oo. From Eq.(A.9) and the definition of ek, we see that _?k = Xk + O(N-2), as N ---* c_, as asserted

in Theorem 2.1.

Also, using some of the same steps that led to Eq.(A.4), we can write

{_--1 ( JTr )} (l+O((Nek)2))(A.10) Si(Tr) • Dg(_k) = [f (xk)] j-1 sin

}q-E [f (Xs)] j-lsin _ COs(jAk,s)
s=l

s#k

n {_ 1 (jr)sin(jAk,s)} -+E[f'(xs)] _sin _ ....
s=l j=l

Using Eqs.(A.5) and (A.6), we find that each of the terms beyond the first on the right side of Eq.(A.10) is

O(N-1), as N ---* oo. Then, using Eq.(A.8), we find that Eq.(A.10) can be written as

DN(kk) = [f (xk)] + O(N-1),

as stated in Theorem 2.1.
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Appendix B. Exponential convergence. We now outline a proof that the sequence (fM,),M}

converges exponentially to f in the maximum norm, outside the union of a finite number of small open

intervals that contain the points of singularity of f.

To establish this exponential convergence, we first define the error terms

where

(B.1)

• E O) , ,+E_)N(X),EM,N(X) =--f(x) -- fh,N(X) = M,N(X) ,

EO) , , (2) .M,_tx) -- f(z) - fM, N(Z), ---- --EM,N(X) fM,N(X) f_,N(X).

Here fM,N is defined by the right side of Eq. (9.4) with x_ and J_,8 replaced by xs and [f(k)(x8)], respectively,

in the definitions (9.2)-(9.5). From the results of [6], (1)EM,)_M(X ) decays to zero exponentially, as M _ oo.
To show that (2)EM,xM(X ) also decays to zero exponentially, we note first that, from its definition,

(B.2)

where

(B.3)

N M n

f_t,g(X). = -2a° + Eajcos(jx)+bjsin(jx) + EEA.k, 8 Yk,lV(X-X*_) ,
j=l k=0 s=l

Yk,N(X) -- _ ak,j cos(jx) + bk,j sin(jx).
j=N+I

Thus, it follows from nqs.(n.1), (B.2), and (9.2)-(9.5) that

(2) .
EM,N(X) = E (Ak,, Yk,N(X -- Xs) -- Ak, _ Yk,N(X -- x*_)).

k=0 8=1

Here the constants {Ak,8} are defined by Eq.(9.3) with J_,8 replaced by [f(k)(xs)]. To facilitate our proof
E(2) ,,below, we rewrite M,N(X) as

E(2) , , _(2,1), , L_(2,2)
M,N(x) = I_M,N(X') " _M,N'

(B.4)

where

(B.5)

and

(B.6)

U ?1

"E_M,N(X)r_(2"I)z\ ---- E E Ak,_ {yk,N(X_Xs ) -- Yk.N(X -- x*)},
k=0 s=l

r.(2,2), x ,
_M,N (z) = E {Ak,. -- Ak,,} Y_,N(X-- x*_).

k=0 8=1

E(2) , ,In order to show that M,XM!,X) decays to zero exponentially, as M --* co, it suffices to show that both
E(2,1) , , ._(2,2) _ ,

M,xM(X) and 12.,M,,kM(X ) decay to zero exponentially, as M --* oo.

Using Eqs.(6.3)-(6.4), we can write

¢M,8 (1 + 0 (l/N))
(B.7) x_ - Xs = NM+------_ ,

(B.8) , [ )] aM,k,. (I+O(1/N))asN--*_,Jk,s -- f(k) (X8 = NM+I_k
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for s = l, 2, ..., n, and k = 0, 1, .., M. Here _)M,s and OtM,k,s are certain constants.
_(2,1)

We first outline a proof that _M,N decays exponentially to zero. From Eqs.(9.1), it follows that

el C2

(B.9) ]ak,jl <_ _+--f' and ]bk,j] <_ jk+-----f'

where Cl and c2 are constants independent of k and j. Therefore, it follows from Eq.(B.3) that there exists

a constant C1, independent of k and N, such that

1 C1 1

(B.10) max IYkN]<C1 E jk+l <-- for k> 1,-_<x<Tr ' -- -- k g k' -
j=N+I

which follows easily by the integral comparison test. Using Eq.(B.3), Eq.(B.7), the integral comparison test,

and Taylor's theorem, we obtain

m

]¢M,sl 1 1
(B.11) IYk,N(X -- X_) -- Yk,N(X -- Xs)l <_ C2 NM+2 k - 1 N k-l '

for s = 1,2, ...,n, k = 2, ..,M, and for

(B.12) tX- X*sI > O(¢M, s N-M-2).

Here, _)M,s = _)M,s (1 + O(1/N)), and C2 is a constant independent of M and k. We now assume that there

exist some positive constants 51, 62, 53, A1, A2, and A3, such that the following bounds hold:

I_M,k,8] < Aa M 5 k k!,

IAk,_l <--A2 5k k!, and

(B.13) I¢M,81 < Aa 5M M!, for s = 1,...,n.

The restrictions (B.13) are mild, and are motivated by a similar study in [6]. Then, using Eqs.(B.11) and

(B.13), we find that, for k k 2,

5M M!
IAk,_[- [Yk,N( x -- Xs) -- Yk,N(X -- X:) I _ d16_ N

NM+2(k- 1)'

where dl is a constant. Using Stirling's approximation for M! and setting N -- AM, we find

(B.14) IAk,_l" IYk,N(x -- x,) -- Yk,N(X - x_)l < d2v/-M
k=0 s=l

where d2 is a constant independent of M. Thus, for any fixed values of 62 and 63 (with 6263 > e), we can
¢_(2,1) / \

selectA largeenough so that (5253)/(Ae) < i. Consequently, _MAM(X) decays to zero exponentially,as

M --+oo.

r_(2,2) / \ ,

We now consider 15,M,AM(X ). From the definitions of Ak, _ and Ak,_, and Eqs.(B.8), it follows that

(B.15) IAk, • -mk,sl _-- NM+I--k 'r E NM+l+i-k
i=2

i even
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where aM,-1,s ----0, f_k,k-2 ----[S_k)2(0)],.... and, in general, j3k,k_ , is a function of the jumps [SJ k) (0)], j -- 1, , k.

We now conjecture that the following bound holds for f/k,k-i :

(B.16) I_k,k-,[ <-- (k---i)! "

Although we do not have an analytical proof for this bound, it has been verified using Mathematica [22]

for 0 < i <: k _< 300. Therefore, using Eqs.(B.13) and (B.16), and assuming N > M/(e5l), it follows from

Eq.(B.15) that

Mhkl k!
(B.17) [A'k, 8 - Ak,81 <_ C3 y_k ,

where Ca is a constant independent of M and k. Using Eqs.(B.17), (B.10), and (B.13) we obtain

IA_.8 - A*k,81 • IYk,N(X-- X*)l < d2 M _k
(k 1)!

-- NM+I

Therefore, using Stirling's approximation for M[ and setting N = AM, we find

(B.18) E [Ak,s - A*k,s [ • [Yk,N(X -- X*s) [ <_ diM 3/2 _e
k:0 s= l

As a consequence, for a fixed 51, if we select A such that A > 51/e, ,_(2,2) ,I:gM,_M (X) decays to zero exponentially,
as M---*oo.

It now follows from Eqs.(S.4)-(B.6), (B.14) and (B.18) that

E(2) ( _1 _ M (_2(_ 3 _ M

(B.19) M')_M(X) --< dlM3/2 \A-eel + d_x/-M \-A-eel '

where dl, d2 are certain constants. From equation (B.19) we see that, for any fixed values of (fl, 52 and 53,

if we select A so that

(B.20) A > max (51/e, 5253/e),

then (2)EM,),M(X ) decays to zero exponentially, as M --* oo.

Consequently, EM,)_M (X) decays to zero exponentially in the maximum norm for x in the domain _.

Here _ consists of the interval [-Tr, lr], with the union of a finite number of "small" open intervals, 18, for

s = 1,2, ..., n, surrounding the points of singularity of f, removed. In order to show that the total measure of

the union of these "small" open intervals, 18, decays to zero exponentially, we observe from Eq.(B.12) that

the length L8 of the interval/8 satisfies

L8 <<_O(¢M,8 N-M-Z).

Using the bound on CM,_ from Eqs.(B.13) we find that, for N = AM and for large M,

-- _ "

Thus, it follows that the total measure, }-'_2-1 L_, of the union of the intervals goes to zero exponentially, as

M .-.._ (_.
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( )'Finally, we show that f_I,XM (x) converges exponentially to f'(x) in the maximum norm in the domain

_, as M _ oo. We observe that, from the results of [6] and from Eqs.(B.1), (B.4), (B.5) and (B.6), it suffices

to show that both EM[),M(X ) and EM:)_M(X ) decay to zero exponentially, as M _ oo. Using Eqs.(B.3),

(B.13), the integral comparison test, and Taylor's theorem it follows that

(B.21) - c I_M,_I 1 1IYL_(_ - x:) - Y,' (x _)l <
k , N -- 4 -N--_-_ k 2Nk_ 2 ,

and

(B.22) max[Y[,N(X)l < CS k 1 1x_ - -- 1 N k-1 '

for k = 3, ..., M. Here, Ca and C5 are constants independent of k and M. Therefore, using Stirling's approx-

imation for M! and setting N = AM, it follows that

(2 1) ' M3/2 (_2(_3 _ M
(B.23) < \ / '

and

(B.24) (22) ! ((_1_ M

- \_] •

( )'Thus, assuming that X satisfies the condition (B.20), it follows that ]_,),M(X) converges to f'(x) expo-

nentially in the maximum norm in the domain _, as M ---* oo. Using mathematical induction, it follows

that the first l derivatives of f_,_M(X) converge exponentially to the corresponding derivatives of f(x), as

M _ oo. This completes our proof.

29



-1

! !

; II, / ",
_ ,i_!II
-'. _ I!J7

....... -'-'J IY /
11 o

I I
| I
I l
II

I , , , , , , , , I , , , , I b , , , I , , , , , , , , ,-2 o _ 2 3 4 _

FIG. 1. Plots of DN(x) for Example I using N = 16 (dashed line) and N = 84 (solid line).
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FIc. 2. The normalized errors N 2 t_1 - acll (solid line), obtained from DN(X), and N 2 tx_ - xl] (dashed line), obtained

from the LSPE method, for Example 1, plotted as functions of 1IN.
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FIG. 3. The normalized errors N iDN(_I) -- [f(xl)]l (solid line), obtained from DN(X), and N 2 J_,l - [f(Xl)][ (d_hed
line), obtained from the LSPE method, for Example 1, plotted as functions of 1IN.
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FIG.4. A surface plot of the error function E (see Eq.(3.3)) for Example 1, as a function of _cl and Jo,1, near the

minimum of E. Here N = 32, R = 12, and wj = j.
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FIG. 5. Plots of D1,N(X) for Example 1 using N = 32 (dashed line) and N _- 64 (solid line).
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FIG. 6. The re_co_tructed appro_mation f_,3_(z) (dashed line) for the function f(x) (solid line) of Ezample 1, using the

parameter estimates obtained by the LSPE method with M = 2 and N = 32.
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FIG. 7. The reconstructed approz-/mation (f_,32(x)) (dashed line) ]or the function ft(x) (solid line) of Example 1, as_ng

the parameter estimates obtained by the LSPE rnethed with M = 2 and N ----32.
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